Judging machines: philosophical aspects of deep learning
نویسندگان
چکیده
منابع مشابه
Learning Deep Inference Machines
Introduction. The traditional approach to structured prediction problems is to craft a graphical model structure, learn parameters for the model, and perform inference using an efficient– and usually approximate– inference approach, including, e.g., graph cut methods, belief propagation, and variational methods. Unfortunately, while remarkably powerful methods for inference have been developed ...
متن کاملLearning deep representations via extreme learning machines
Extreme learning machine (ELM) as an emerging technology has achieved exceptional performance in large-scale settings, and is well suited to binary and multi-class classification, as well as regression tasks. However, existing ELM and its variants predominantly employ single hidden layer feedforward networks, leaving the popular and potentially powerful stacked generalization principle unexploi...
متن کاملJudging a Movie by its Poster using Deep Learning
It is often the case that a human can determine the genre of a movie by looking at its movie poster. This task is not trivial for computers. A recent advance in machine learning called deep learning allows algorithms to learn important features from large datasets. Rather than analyzing an image pixel by pixel, for example, higher level features can be used for classification. In this project I...
متن کاملEfficient Learning of Deep Boltzmann Machines
We present a new approximate inference algorithm for Deep Boltzmann Machines (DBM’s), a generative model with many layers of hidden variables. The algorithm learns a separate “recognition” model that is used to quickly initialize, in a single bottom-up pass, the values of the latent variables in all hidden layers. We show that using such a recognition model, followed by a combined top-down and ...
متن کاملDeep Learning using Support Vector Machines
Recently, fully-connected and convolutional neural networks have been trained to reach state-of-the-art performance on a wide variety of tasks such as speech recognition, image classification, natural language processing, and bioinformatics data. For classification tasks, much of these “deep learning” models employ the softmax activation functions to learn output labels in 1-of-K format. In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Synthese
سال: 2019
ISSN: 0039-7857,1573-0964
DOI: 10.1007/s11229-019-02167-z